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Abstract. Using recent results by Cardy based on conformal invariance of critical correlation 
functions we calculate universal results for scattering functions S ( k ) ,  susceptibilities, 
correlation lengths and specific heat correction terms for finite Ising systems in two 
dimensions with circular, elliptical and rectangular shapes and free boundary conditions. 
Our results show the effects of critical order on these quantities. For a circle, S ( k )  decays 
as 1 / k 2 - ' h  for a large range of intermediate k values with an 'apparent' exponent 
?app = 0.09. The probable influence of end, edge and domain wall effects in the rectangular 
geometry is discussed. Application of our results to experimental systems and other 
theoretical models is discussed. 

1. Introduction 

Recent work by Cardy (1984a, b) on the conformal invariance of critical correlation 
functions greatly extends the theory (Barber 1983, Kleban 1984) of finite-size effects 
at critical points since most previous results applied to thermodynamic quantities. In 
this paper we apply Cardy's results to the numerical determination of (elastic) scattering 
functions S( k ) ,  bulk susceptibilities, correlation lengths and specific heat correction 
terms for finite two-dimensional systems. We consider circular, square and rectangular 
shapes for 2~ Ising systems with free boundaries. Some calculations for elliptical 
shapes are also mentioned. Our results are universal for each shape considered. They 
specify the effects of shape and critical order on the quantities considered. This 
complements previous work on shape effects on the free energy, energy and specific 
heat for the simple Ising model with periodic boundary conditions and rectangular 
geometries in the critical region (Ferdinand and Fisher 1969, Kleban and Akinci 
1983a, b) and scattering functions for infinite systems (Tracy and McCoy 1975 and 
references therein). 

In 0 2 we review some general features of the conformal theory. Application to 
the circular geometry is made, and a universal vanishing of any correlation function 
demonstrated. Section 3 defines the scattering function S(k ) ,  susceptibility and specific 
heat correction term and gives results for these quantities in a circular region. An 
interesting power-law behaviour of S( k )  is shown and discussed. Results for rectangular 
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regions are presented in 0 4. The dependence of the various quantities on aspect ratio 
s is shown. For the correlation length, susceptibility and specific heat, this is discussed 
in terms of the effects of a I D  Ising array of domain walls (Kleban and Akinci 1983a, b), 
end and edge effects. A few results for elliptical shapes are also mentioned. 

Conformal invariance applies in the field theoretic limit, which means one is 
treating the critical point with a continuum theory. In this context, our results are 
exact, within numerical errors. Their application to lattice models or other systems 
generally involves corrections at short distances, e.g. when the wavevector k - l / a ,  
where a is a lattice spacing. This is discussed further in 0 5. We also make some 
remarks on the connection of conformal results, which are valid at the critical point 
T = T, only, with what one expects in the critical region ( T  near T,). Some additional 
comments on the application of our results to experimental and model systems are 
also included in 0 5 .  Computational details are considered in § 6. 

2. Conformal invariance-general features and circle map 

Conformal invariance of critical correlation functions (Polyakov 1970, 1974, Wegner 
1976) implies that local scalar operators 4 at T, satisfy 

(1) g(z1 ,  z2) = ( d ( Z I ) d ‘ ( Z 2 ) )  = I ~ : l ” l ~ : l x ~ 4 ~ ~ l ~ d ~ ~ 2 ~ ~  
where z +  w ( z )  is an arbitrary conformal transformation, wi = w ( z , ) ,  x is the critical 
dimension of the operator 4 (e.g. x = for the 2~ Ising spin operator) and z and w 
are ordinary complex numbers. Equation ( l) ,  which we have expressed in a form 
appropriate for two-dimensional systems, is valid quite generally (Cardy 1984b); 
however, the constraints it implies are strongest in two dimensions (Belavin et a1 
1984a, b, Dotsenko 1984a, b, Friedan et a1 1984) since the conformal group is infinite 
dimensional. Note that equation (1) may be viewed as a generalisation of scale 
invariance, with I w ‘ I  a position-dependent scale parameter. 

Cardy (1984a) has exploited equation (1) in two dimensions by using a finite 
conformal transformation to map g, (4( z 1 ) d ( z 2 ) )  in the plane into the corresponding 
g,  = (@( w 1 ) 4 (  w z ) )  in a semi-infinite strip. In particular, this can be used to explain 
the form of the universal finite-size amplitude of the correlation length. In further 
work, Cardy (1984b) has employed the properties of infinitesimal conformal transforma- 
tions to determine completely the functional form of the correlation function in the 
half-plane with free boundary conditions. This has been accomplished for the Ising 
model spin-spin and energy-energy correlation functions and some other cases. In 
this paper we use Cardy’s latter results for Ising systems in the half-plane and equation 
(1) with finite conformal transformations to calculate various quantities of interest in 
finite systems by mapping the half-plane into elliptical and rectangular regions. 

Before describing our specific results, we review some universal features of critical 
correlation functions in semi-infinite geometries with free boundaries (Cardy 1984b). 
Let G(r] ,  r z )  = (4(r1)+(r2)) be a two-point function in arbitrary dimension, with G = 0 
on the boundary surface, which we define by y = 0. Conformal invariance then implies 
that 

G(r1, r2) = (YIY2)-x@‘(r(x1 -x2)2+Y:+Y:llYlY2~ (2) 
where x is the part of r parallel to the bounding surface. In arbitrary dimension, the 
form of @ is not determined by conformal invariance; however, other arguments fix 
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its asymptotic behaviour in certain limits. If y,, y 2 + m  with Ix1-x21 fixed, the bulk 
limit is attained, and G - Jr, - r21-2x implies 

a q 2 + & ) + & - * ,  &+0. (3) 

On the other hand, when Ix,-x21+m with y,, y, fixed, one expects (Binder 1983) 
surface critical behaviour with G - Ix, - x21-2xs, where x, is a surface critical exponent. 
This in turn implies 

a([)+ 5-xs, [+Co. (4) 

Similarly one can determine the form of G with one point near the surface and the 
other in the bulk. We will show below that equations (1)  and (4) in fact imply a 
universal form for the vanishing of G at the edge of a finite circular region. In two 
dimensions, conformal invariance also determines the function 0. 

Now consider mapping the half-plane y > 0 (with free boundary conditions on the 
real axis) into a circle of radius one via the transformation 

w = (z- i ) / (z+i) .  ( 5 )  

This takes the point at infinity onto w = 1, and z = 0 onto w = -1, with the real axis 
in the z plane mapped onto the circumference of the circle. The correlation function 
g ( w , ,  w2) is determined via equation ( l ) ,  with the Ising spin-spin correlation function 
in the half-plane given by equation ( 2 )  with x = t and (Cardy 1984b) 

The constant in equation (6) is chosen so that g + lr,21-1”4 in the bulk limit. 
Equation ( 5 )  maps the half-plane into the circle in a very non-uniform way, and 

one might well wonder whether g (  w,, w 2 )  respects the symmetries of the circle. In 
fact, combining equations ( 2 ) ,  ( 5 )  and ( 6 )  gives 

so that the form given by equation ( 2 )  displays full circular symmetry. The correlation 
functions obtained for the elliptical and rectangular geometries considered below also 
exhibit the symmetries of these shapes. Similar symmetries for order-parameter profiles 
in finite systems with infinite-field boundary conditions have been demonstrated by 
Burkhardt and Eisenriegler (1985). In fact, it follows from equation (1) that these 
symmetries must hold generally since the conformal group includes rotation and 
inversions (Ramond 1981) that do not alter the scale factors (w’l. 

Combining equations (4) and (7) allows us to demonstrate the universal vanishing 
of any critical correlation function g ( w , ,  w2) in a circle with free boundaries as one 
or both points approach the edge. If Iw,I + 1 - E  with I w21 fixed, g + E ~ S - * ;  likewise 
I wll + 1 - E, I w2( + 1 - E ‘  results in g + ( EE’)*S-*  = E ’ ( * S - ~ )  if E a E’ .  This result has been 
found also by Burkhardt and Eisenriegler (1985).  
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3. Definition of quantities and results for the circle 

For probes that couple to the order parameter, the scattering function (structure 
function) is given by 

S ( k )  = 11 g ( w , ,  w2) exp[ik. (wl- w J ]  d2wl d2w2. (8) 

Results for the circle are displayed in figure 1. In performing integrations like those 
in equation (8), it is generally convenient to make use of the fact that Iw ' (z ) l=  lz'( w ) I - ' ,  
which means that the only mapping function necessary is z = z (  w )  (for the circle, this 
may easily be obtained by inverting equation ( 5 ) ) .  Further details on the numerical 
procedure used are given below. 

Note that figure 1 gives the universal line-shape of S ( k )  for circular geometries. 
To compare the scattering function for the circle (or any other geometry) with experi- 
mental or other theoretical results, several additional quantities must be specified. 
First, the correlation function used here is not normalised, so there is an undetermined 
overall multiplicative constant in g and hence S ( k ) .  This constant also affects the 
other quantities calculated below, except the correlation length 6. It depends on the 
particular system of interest. Secondly, to compare S (  k )  with the experimental scatter- 
ing intensity (in single-scattering approximation) it must be multiplied by the appropri- 
ate cross section. Note, however, that for a given system both these constants need 
only be determined once. They are independent of the size and shape of the finite 
regions. Finally, results for regions of the same shape but different size follow by 

W a v e v e c t o r  k 
U n i t  c i r c le  

Figure 1. Full curve (-): structure factor S ( k )  (equation (8 ) )  against wavevector k for 
a circle of radius 1. The line connects 100 data points. Changing the mesh size indicates 
an absolute error of 0.002 for all k values up to 15. Short broken curve ( - - - ) :  Gaussian 
fit at small k values. Long broken curve (---): power-law fit for 10s  k a  15. A least- 
squares routine gives 10.04 k-' 908, i.e. qapp = 0.09. Chain curve ( .  - ,): normalised S( k )  
for perfect order (g = 1). Comparison with the full curve illustrates the effects of critical 
order on the scattering. 
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ordinary scaling. For instance, if we multiply all lengths by a factor A, the scattering 
function obeys 

S ( k ,  A )  = A4-o’2SS(Ak, 1) (9) 

where S ( k ,  1) refers to the ‘unit’ size of a given shape, e.g. the circle of radius 1. The 
power 2d = 4 appears in equation (9) because S is the total scattering intensity, and 
is not normalised to unit area. Further remarks on the application of our results are 
contained in 8 6. 

The function S ( k )  for a circle with free boundaries, illustrated in figure 1,  is very 
accurately represented by a Gaussian for smaller k values, as shown. For intermediate 
k values, 6 5  k 5 15, and perhaps higher (numerical problems preclude accurate results 
for yet larger k-see below), it is extremely well represented by a power law S X  
1/  k2-?w, where the ‘apparent’ exponent has the value qaPp = 0.09 f 0.01. (The error 
estimate follows from attributing the total error in S(i0.002)  to vaPp and is therefore 
quite conservative. A least-squares fit error is considerably smaller.) The foregoing 
result for r]app might appear to contradict the 2~ Ising model value r ]  =2x=O.25. 
However, it should be remembered that at T = T,, the thermodynamic limit is not 
unique. Since the correlation length, which measures the distance over which boundary 
effects are felt, is proportional to any length n measuring the size of the system, the 
fraction of the area (or volume) affected does not vanish as n +a. Therefore S ( k )  
for free boundaries will in general differ from what is obtained with, e.g., periodic 
boundaries. It is nonetheless quite interesting that, for the circle, S ( k )  at T, has (at 
least over a certain k range) power-law-like behaviour. Note that this result is by 
equation (9) independent of the size of the circle; no matter how large the radius there 
will always be a k range in which rlapp governs the decay of S. At very large k values 
S ( k )  will of course go as l /k2-’  since by equations ( l ) ,  ( 2 )  and (3), g +  Iw, - w2j-? at 
small 1 w1 -. w21. However, in many cases in experiments or numerical simulations it is 
difficult to determine S ( k )  accurately at large k (since S is small) or small k (due to, 
e.g., forward scattering). Hence, fitting data to a power-law form may lead to ‘erroneous’ 
results; i.e. one would be measuring rlapp rather than r]. Notice that for a power-law 
form this will occur even for an average of S (  k )  over a range of system sizes. Since 
r ]  is related to other critical exponents via scaling, this effect could also be important 
for other quantities. For temperatures close but not exactly equal to T,, S ( k )  must 
cross over to a universal form 1/  k2-” at least for some range of k values. Presumably 
this will occur, in general, when the finite-system size is of the order of the bulk 
correlation length (i.e. at fixed scaled temperature). A full analysis would be interesting 
but is beyond the scope of this paper. 

We also examined the Fourier transform of S (  k ) ,  by calculating g (  wl, w 2 )  for fixed 
r = Iwl - w21, integrated over all w1 + w2 values. For small r values (~0 .01 )  this behaves 
as r-”4,  as it must, but as r increases, the limitation of w1 and w2 to a finite region 
(and the vanishing of g at the boundary) reduces it from this form, so that it vanishes 
at r = 2 .  This is consistent with the behaviour of S (  k )  described above. 

The (bulk) susceptibility per unit area is simply 

x = S(O)/A (10)  

where the area A = 7~ for the unit circle. For a circle of radius one, we find x = 1.51. 
The specific heat correction term requires separate discussion. The connected 

energy-energy correlation function in the half-plane with free boundary is (Cardy 
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1984b) 

gE(Z1,  z 2 )  =4Y1Y2/{ [ (x1  - x 2 ) 2 + ( y l - Y 2 ) 2 1 [ ( x 1  - x 2 ) 2 + ( y 1 + Y 2 ) 2 1 ) *  (11) 
-2  For this operator the scaling dimension x = 1, so that g,- Izl - z21 or I w1 - w21-2 

when the two points approach each other. This means that the total specific heat 

in any finite region is logarithmically divergent. This behaviour is of course not physical, 
but results since the conformal theory holds in the continuum limit and the integration 
in equation (12) includes I w1 - w21 values smaller than the lattice constant of any specific 
system. In computing our results we therefore imposed the condition I w1 - w21 2 E (see 
below for further remarks on this short-distance cut-off). Since g E  is well behaved 
elsewhere, it follows (see the appendix) that for a circle of radius R 

C = 2 7 r A l n ( R / & ) + A B ( ~ )  (13) 

where A is the area and the specific heat correction term B ( E )  is finite (and intensive). 
We have calculated B = B(0)  by letting E + 0 numerically; for the circle we find B = -8.3. 
In this computation, numerical problems associated with the logarithm in equation 
(13) are encountered in using equation (12) as it stands, since the leading term diverges 
as E is decreased. However, if we set C = C1 + C2, where 

good convergence is obtained. With this decomposition C2 includes all of the diver- 
gence and part of the term B. It was handled (mainly) analytically as described in the 
appendix, while C1 was computed numerically. 

Note that the value of the cut-off E affects both terms (but especially the first!) in 
the specific heat in equation (13). Therefore it constitutes another quantity that must 
be determined before comparison with experimental or other theoretical results can 
be made. This problem does not arise with the spin-spin correlation function because 
the smaller value of the scaling dimension (x = { against 1) precludes short-distance 
divergences. For the specific heat of a specific system an appropriate value for E should 
be of the order of a few lattice spacings. 

4. Rectangular (and elliptical) geometries 

Results for rectangular-shaped areas were also obtained using the inverse Schwartz- 
Christoffel transformation (Nehari 1952). The scattering function S( k ) ,  susceptibility 
x and specific heat correction term B were calculated as described above for rectangles 
of width 2 and various values of the aspect ratio s = length/width. We also determined 
most of these quantities for an infinite strip ( S = C O )  by choosing s to exceed the 
correlation length 6, (see below) for s = CO (the maximum value) and restricting one 
point in the integration to a strip of width 0.1 centred at the midpoint of the strip. As 
a check, we performed an independent calculation using the transformation z = enw’2, 
which connects the half-plane and an infinite strip of width 2. 
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The correlation lengths, defined by 

were also computed. For the circle of radius one, we obtained &= (tz+ i$)’”= 0.61. 
Equation (15) is appropriate for a finite geometry. Note that & and 5, also provide 

measures of the inverse linewidths of S( k )  in the corresponding directions. 
For the rectangle, both & and 6, increase with the aspect ratio (figure 2). & (short 

direction) approaches its asymptotic (s  = 03) value rapidly, being within the expected 
error by s = 2. However, 6, (long direction) approaches its infinite strip value in a 
more complicated fashion. A rapid increase until s = 5  is followed by a region in 
which 6, grows slowly with s. Numerical problems (see below) precluded accurate 
results for s b 10; however, the s = 03 value clearly exceeds that at s = 10, indicating a 
slow increase of 6, for s > 10. This may be understood semi-quantitatively as an end 
effect. Assuming 6, takes on its s = 1 value in a region of width about one (s = 1) 
correlation length at the ends and its s = a3 value elsewhere gives 6, = e,( 1) (0.6/s) + 
(,(a) (1 -0.6/s) which reproduces the data within the error for s 2 5 ,  but falls above 
the computed values for smaller s values. 

1.754 

1.00 
B 
U $ 4  
0.50L,, , , , , , , , , , , , , , , , , , , , , , , , , 

0 5 10 41 

Aspect ratio s 

Figure 2. Correlation lengths (equation ( 1 5 ) )  for 2 x 2s rectangles. Squares (U) indicate 
5, the short direction, triangles (A) t,, the long direction. Here and in figures 3-6 full 
lines are spline fits. From changing the mesh size, we estimate an error within the size of 
the s mbols. For a rectangle with perfect order ( g =  1) one finds 6, =J2/3=0.816, 6, = 
JiTJ‘s =0.816 s. For a circle of unit radius we found 6- (tf,+ (:)’”= 0.61. Writing 
6 = 6oA”Z, where A is the area, gives to = 0.34 for the circle and 0.43 for the square. 

For the infinite strip, one can define 6, as a moment (equation (15)) or via the 
asymptotic behaviour of the correlation function, g + e-lul’E as lyl+ 03. To compare 
these two definitions it is useful to introduce a factor of 4 on the RHS of equation (15). 
With this slightly altered definition, the two values of 6, will coincide exactly for the 
case of an exponential correlation function g(xl, x2, y )  = e-’y”6. Making this change, 
the moment values of 5, for the infinite strip is 1.17. This is within 10% of its asymptotic 
value (Cardy 1984a) 5, = 2n/  T ~ I I =  n f T X ,  = 1.27, using the strip width n = 2 and x, = 
for the Ising model. The moment value is also less than the asymptotic value (2.55) 
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for the periodic boundary case (Kleban and Akinci 1983a), as one would expect. Also, 
for the finite rectangle, 5, grows similarly with s for either boundary condition. In 
particular, if one removes end effects from the free boundary values the two cases are 
very close to each other for l s s s 5 ,  with the (approximate) periodic values rising 
faster for s 2 5.  A change in 6, against s near s = 5 is observed for the subtracted 
values. We will see that a similar effect also occurs in the susceptibility and specific 
heat correction term. 

The behaviour of the scattering function S(k) for various s values is shown in 
figures 3 and 4. The linewidths as a function of s clearly reflect the trends exhibited 
by the correlation lengths, discussed above. For s = 1, a power law fits the decay of 
S over the range 2 d ky < 8 reasonably well with a power consistent with that found 
for the circle ( qaPp = 0.09). For s = 2 and 00, S (  &) for 2.5  d k, d 1 0  may be represented 
by q =O. When s = 2, S(4) over this range resembles the square (s = 1)  case. It is 
too ‘noisy’ for a reasonable fit at s =CO, where a power-law fit is not distinguishable 
from an exponential. Generally, for larger s values a power-law fit becomes less 
accurate. It is not clear whether this is due to errors in the computation or the inherent 
behaviour of S. 

The bulk susceptibility (per unit area) against s is shown in figure 5.  According 
to the results of Kleban and Akinci (1983a, b) the shape dependence of the finite-size 
corrections to the specific heat near T, for an Ising model with periodic boundary 
conditions in a rectangular region may be understood in terms of a I D  Ising array of 
domain walls. At T = T,, the number of domain walls in this array is independent of 

0 2 4 6 8 10 
Wavevector k.  

Figure 3. Scattering function S ( k x ) / s  against 
wavevector k, (short direction) with k, = 0 for 2 x 2s 
rectangles. Triangles (A):  s = 1, diamonds (0): s = 
2, squares (0): s = 6, open circles (0): s =a. Here 
and in figures 4 and 5 the square estimates the error 
for all curves. The hump near k = 5 would probably 
disappear if the mesh size were decreased-similar 
effects were seen in the circular geometry. 

0 2 6 8 10 
Wovevector ky 

Figure 4. Same as figure 3, with k, replaced by k, 
(long direction). The oscillations fors = mare within 
expected error; we believe this structure is a numeri- 
cal effect. The convergence to s = m for figure 3 (k,) 
and here (k,) at a given wavevector in the large k 
region ( k z 3 )  mimics the behaviour of the 
conesponding correlation length against s shown in 
figure 2. 
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1 . 5 4 , ,  , , , , , , , , , , , , , , , ~, , , , , , , , , , , , 
m 0 5 10 

Aspect rat io s 

Figure5 Bulk susceptibility x (equation (10)) against 
aspect ratio for the rectangle. For a circle of radius 
one, we found x = 1.51. The s dependence of this 
quantity (and the specific heat correction term, figure 
6) is discussed in terms of a ID Ising array of domain 
walls and edge effects in the text. 

-1 3 
0 5 10 m 

Aspect r a t 0  s 

Figure 6. Specific heat correction term B (equation 
(13)), with R replaced by the width n = 2  against 
aspect ratio s for the rectangle. For the circle of radius 
l,usingequation(l3) wefind B = -8.3 whereas forthe 
square B = -12.1. Note, however, that if we write 
C I A  = 277 ln(A’’2/E)-B’,soastocomparefiguresof 
equal area, B’ = - 1  1.9 for the circle and -12.1 for the 
square. The percentageerror in the resultsgivenin this 
figure is probably larger than in the other cases 
reported. 

size but increases with the shape parameter s. Thus the s dependence of the ZD quantity 
is given by the length dependence of the corresponding quantity in a I D  Ising model. 
Such an array is also expected to be present with free boundaries. Since the susceptibil- 
ity per spin of the I D  Ising model with free ends grows with the number of spins, the 
array may be expected to contribute a term to ,y that increases with s at large s. In 
addition to this array, one expects a contribution to ,y from end and edge effects. For 
an ( m  x n )  rectangle the total number of spins involved should be proportional to 
ntm + mt,. As can be seen from figure 2, this results in a number of spins per unit 
area that decreases with s, approaching a constant as s + 00. Thus if their contribution 
to ,y does not dominate the domain wall contribution, the net effect is a term that 
grows with s, as observed. 

If one subtracts off an assumed end contribution to ,y as was done for ty above, 
the result lies above the data for s 3 5 (and for lower s values as well), suggesting that 
domain wall and edge contributions to ,y have not yet reached their asymptotic values 
at s = 5 .  Unfortunately it appears difficult to make these interpretations more quantita- 
tive since the relative magnitude of various quantities is unknown and there could be 
an influence of the edge spins on the domain walls. 

Results for the specific heat correction term B ( 0 )  as defined in equation (13) ,  but 
with R replaced by n = 2 against the shape s = m/ n = 2s/2, are shown in figure 6 .  
Note that B behaves very differently than for the ZD Ising model with periodic boundaries 
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(Ferdinand and Fisher 1969) where it is always positive, and shows a maximum as s 
increases. This latter behaviour is due to a I D  array of domain walls. In the present 
case, the I D  array with free ends should make a contribution to B that is negative but 
decreases in magnitude with s, in agreement with the overall trend exhibited in figure 
6. This is expected since there is no shift in the specific heat maximum for a I D  Ising 
model with free ends. In addition, edge spins should also be considered. For the 2~ 

Ising model the edge specific heat per spin near T, is negative for a long strip (McCoy 
and Wu 1967, Binder 1983). As explained above, the nunber of edge spins per unit 
area decreases to a constant as s grows. Thus both terms should contribute similarly 
to R. 

Attempts to make this picture more quantitative have not been successful. One 
problem is that the dependence of the domain wall energy on (scaled) temperature 
near T, is not known for free boundaries-using the periodic boundary values (Kleban 
and Akinci 1983a) gives a contribution to B that is too small by about an order of 
magnitude and has the wrong sign. 

Subtracting end effects from the computed values of B as was done for & and x 
gives a result that agrees within the error for s 2 5, suggesting that domain wall and 
edge contributions to B no longer vary with s in this range. 

It is also interesting to compare the value of B at s =CO with the exact result of 
Au-Yang and Fisher (1975) who find 

C/k ,=Aoln  n + B ,  (16) 
for an ( n x c o )  simple Ising model, where C is the specific heat per spin and Ao= 
0.494 5386 . . . , B ,  = -0.312 5538 . . .. As explained above, a direct comparison of 
equations (13) and (16) requires specification of both an overall multiplicative constant 
and the short-distance cut-off E, since neither quantity is determined by the conformal 
theory. If we take E = 1, we find that the B value exhibited in figure 6 is too negative 
by a factor of 2.3. The correct ratio of A,/ B ,  is obtained if we take E = 0.44. This 
indicates that (at least on average) g, is underestimated by the conformal theory or 
that short-range corrections (which are of the same order as B )  are important. The 
latter possibility could arise from the relatively large critical dimension (x = 1) of the 
energy operator which emphasises short-range behaviour. 

We have also calculated for elliptical shapes by making use of the transformation 
from an ellipse to the circle of unit radius given by Nehari (1952). This required 
considerable computation time, so a few results were obtained for S ( k )  only. They 
are rather similar to the rectangular case. 

5. Application to experimental and model systems 

We now consider further the relevance of our results to experimental and model 
systems. First we emphasise that the conformal mapping technique is valid only at 
T,. This makes comparison with existing analytic and numerical results difficult, since 
there are very little data valid exactly at T,. On the other hand it illustrates the value 
of this method in extending what is known. For experimental systems, the problem 
of determining T, is posed. A general method for doing this is described by Bartelt et 
a1 (1985). For T near T, (when one is in the critical region), the appropriate variable 
is the scaled temperature T = L/&, where L is a typical dimension and tm the infinite 
system correlation length. Now, taken as functions of scaled temperatures (Barber 
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1983, Kleban 1984), one does not in general expect finite-size quantities to vary rapidly 
near a second-order transition. Hence results valid at T, should be useful in understand- 
ing behaviour in the rest of the critical region. 

Secondly, the conformal results are only valid in the continuum limit, as mentioned 
in the introduction. This implies that the conformal results for a correlation function 
break down at short distances: here, when the two points are too close together or one 
or both of them is too close to the edge. Thus, for a given system, one should in 
principle cut off the integrals in S ( k ) ,  for instance, to account for this. The cut-offs 
to be taken are not universal, and cannot be determined without further knowledge 
about the specific system. However, for the spin-spin correlation function, the integrals 
computed here depend only very weakly on these values. For the energy-energy case, 
the short-distance cut-off does matter, as described above. One might worry about the 
effects of these corrections if the system is scaled up in size. We have not attempted 
to address this concern generally. However, we note that by general scaling arguments 
the distance over which these corrections are felt cannot grow faster than the correlation 
length, which is always proportional to a typical dimension, hence the relative area 
influenced will not increase. Also, in a more general sense, the success of the 
phenomenological renormalisation group in predicting bulk quantities from numerical 
results for very small systems gives confidence in the value of results from conformal 
theory. 

Furthermore, this short-distance cut-off implies that conformal results for S(  k )  
apply only for ks l /a ,  where a is a lattice spacing. Recent Monte Carlo simulations 
(Bartelt and Einstein 1986) for the simple Ising model on square lattices of sizes up 
to 60 x 60 lattice spacings show excellent agreement (within our numerical errors) with 
the conformal results for k s  7r/2a, i.e. k values from the Brillouin zone centre to 
halfway to the zone edge. 

Since conformal invariance includes rotational invariance (Ramond 198 l ) ,  our 
results are restricted to systems with isotropic fixed point Hamiltonians (Cardy 1984b). 
This means, e.g., that they apply to Ising transitions on lattices with a square unit 
mesh, but (in general) not to rectangular meshes. 

Another potential problem for real systems has been pointed out by Burkhardt and 
Eisenriegler (1985). As mentioned above, the scaled temperature is defined by T = L / g L  
At T,, where conformal results are valid, T = O .  However, if L is large, temperature 
uncertainties may induce large values of T, giving rise to errors. This certainly can be 
a problem; however, it should be mentioned that the evidence (Ferdinand and Fisher 
1969, Binder 1983, Barber 1983) indicates that many quantities are not strong functions 
of 7 near T = O ,  mitigating this effect. 

In applying the results of this work to real surface systems the restriction to free 
boundary conditions must also be remembered. This implies that there is no ordering 
field at the edge of the region in question. For adsorption systems, one generally 
expects the edge to consist of random defects or randomly arranged step edges. For 
strong (or weak) adsorption sites, such as one might encounter at the terrace edges 
on a stepped surface (Kleban 1981, Kleban and Flagg 1981), there are several 
possibilities. If the edge sites prejudice the adsorbate into one ordered state (e.g. for 
strong sites and ( 1  x 1) order) the results given here do not apply. If, on the other 
hand, edge effects favour an ordering of different symmetry from that characterising 
the phase transition, or if they favour no order at all, the order near the boundary will 
be reduced, as for free boundary conditions. To the extent that these effects are similar, 
our calculations are applicable. If there are, in particular, randomly arranged strong 
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and weak sites at the edge, a model with quenched random fields at the boundaries 
is probably appropriate. However, we are not aware of any general treatment of this 
problem so it is not clear how it relates to the free boundary case. If one has an array 
of uniformly stepped terraces on a stepped surface, correlated one-dimensional random 
fields could arise, as has been pointed out elsewhere (Clements and Kleban 1984). 
Similar remarks apply for phase transitions involving surface reconstruction. 

The scattering function S ( k )  defined by equation (8) is ideal in that it applies to 
instruments with infinite coherence length (spatial resolution). To model the effects 
of a finite instrument coherence LI one generally convolutes S ( k )  with a Gaussian 
function chosen to model the instrumental parameters. In the limit that the dimension 
n of the ordered region exceeds LI, the scattering function will no longer have the 
shape computed here. Its magnitude will then be determined by local correlations the 
expectation values of which are energy-like. Its shape will be determined by the 
resolution and therefore will vary on the scale of l /L I  rather than l / n .  

Another point of interest for experimental studies is that the conformal method 
allows the possibility of including the effects of critical order in finite regions on 
multiple scattering at a second-order phase transition. Multiple scattering is important 
for many commonly used probes, e.g. low energy electron diffraction (LEED). By the 
local algebra hypothesis all correlations at T, can be expressed as linear combinations 
of a certain basis set. For the Ising case, this consists of the spin-spin and energy-energy 
correlation functions. 

Finally we remark that the projective transformation of the surface of a sphere 
onto the infinite plane is also conformal. We hope to explore the consequences of this 
elsewhere. 

6. Computational details 

We now give some technical details of the computations performed. We used standard 
Gaussian integration routines. For the circle map, it was possible to express the 
integrand as a function of three variables, with (48)3 = 11 1 000 function evaluations 
employed and a mesh size of 1/48. For the rectangle and ellipse, the problem is 
four-dimensional, with no such reduction possible. Results reported here employed 
either (23)4 = 65 536 or (24)4 = lo6 evaluations, requiring substantial amounts of com- 
puter time. Expected errors in our results are given in the figures. Note that with 
z4 = 16 points along each dimension, the long side of a 2 x 2s rectangle has a mesh 
size Sy = s/8. For the correlation lengths encountered here, this implies problems in 
calculating ,y or the correlation lengths themselves for s h 14. For S ( k ) ,  assuming 
S 2 h/4  as a criterion similarly leads to k, 2 12/s, k, h 12. 

Considerable care was taken with the computer programs employed, in part because 
of the paucity of previous results for comparison. Part of the circle and infinite strip 
results were obtained with independently written programs. Several non-trivial checks 
on the results were used to help ensure accuracy. 
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Appendix 

In this appendix we derive the expression for the specific heat (equation (13)) and a 
formula for the term 

C,  = J I w, - w2/-2 d2w, d2w2. 

These results are necessary for the integration of the energy-energy correlation function, 
to obtain the specific heat correction term B (see equation (13)). First we note that 
the integrand in (Al)  must be replaced by zero for Iwl - w21 < E ,  to avoid divergence. 
This short-distance cut-off is related to the lattice spacing (see text). With this restriction 
in equation (Al) ,  two applications of Gauss’s theorem result in 

1 %  - w21 C, = -; 11 dl, .d12f9(lw, - w2J - E )  In2 -. 
E 

In (N), l I  and l2 are outward directed vectors, 0 the unit step function, and the 
integration is around the circumference of the region of interest. For E + 0, it is easy 
to see that removing the 0 function in (A2) gives rise to an error less in magnitude than 

lim a - 0  1 dl, 1; ln2( :) dx = lii E 1 dl, I:,. In2 z dz (A31 

 ED 

where D is the circumference. Hence, for small E, 

dl,  d12 ln2(/w, - w * / / E ) .  

Introducing the (arbitrary) factor L in the logarithm and noting that a constant integrand 
in (A4) gives zero leads to 

Applying Gauss’s theorem to the first term then gives 

C, = 2A7r In( L/ E )  + K 

where A is the area of the region integrated over and 

The first term in (A6) contains the logarithmic divergence of the Ising model specific 
heat. The second term is proportional to L2, so that for ordinary regions it gives a 
contribution to the (extensive) specific heat correction term AB. 
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For a circle of radius R = 1, we can set L = R = 1. Then 

K = - 4 2 ~  d8  cos 0 ln2(2 sin $8). 

If we let 4 = 8/2 and integrate by parts, we find 

K =27r J: (1 +cos 24 )  ln(2 sin 4) d4.  

Integrating by parts once again gives 

('49) 2 K = - r  

where use has been made of the integral 

ln(sin 4)  d 4  = -+7r In 2. r2 
The result (A9) gives part of the specific heat correction term B(0)  for the circle in 
equation (13). 

For an m x n rectangle, for L = 1, K reduces by elementary methods to 

K = K ( m ,  n ) + K ( n ,  m )  ( A l l )  

where 

K ( m ,  n )  = $1; ( m  - y )  ln2(y2+ n') dy - m2(ln2 m -3 In m +;). (A12) 

The integral on the RHS of (A12) apparently cannot be evaluated analytically. The 
results in figure 6 include a contribution from equations ( A l l )  and (A12) for n = 2, 
m = 2s. Dividing by the area A = mn = n2s, one finds 

K / A = ( 1 / 4 4  [ K  (2s, 2) + K (2,2s)] ('413) 

for the part of B arising from C,. In the limit s + a, this reduces to 

K I A  = 4 lom [ln2(x2 + 1) - In2 x'] dx 

= 27r(ln 2- 1). 
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